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Abstract

We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex

built-up structures. The technique interpolates between standard statistical energy analysis (SEA) and full ray tracing

containing both these methods as limiting cases. By writing the flow of ray trajectories in terms of linear phase space

operators, it is suggested to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray

segments. SEA can now be identified as a low resolution ray-tracing algorithm and typical SEA assumptions can be

quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of

applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary.

Some of the inefficiencies inherent in typical ray-tracing methods can be avoided using only a limited amount of the

geometrical ray information. The new dynamical theory—dynamical energy analysis (DEA)—thus provides a universal

approach towards determining wave energy distributions in complex structures in the high-frequency limit.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Wave energy distributions in complex mechanical systems can often be modelled well by using a
thermodynamical approach. Lyon argued as early as 1967 [1] that the flow of wave energy follows the gradient
of the energy density just like heat energy flows along the temperature gradient. To simplify the treatment, it is
often suggested to partition the full system into subsystems and to assume that each subsystem is internally in
‘thermal’ equilibrium. Interactions between directly coupled subsystems can then be described in terms of
coupling constants determined by the properties of the wave dynamics at subsystem boundaries alone. These
ideas form the basis of statistical energy analysis (SEA) which has become an important tool in mechanical
engineering and has been described in detail in text books by Lyon and DeJong [2], Keane and Price [3] and
Craik [4].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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A method similar in spirit but very different in applications is the so-called ray-tracing technique. The wave
intensity distribution at a specific point r is determined here by summing over contributions from all ray paths
starting at a source point r0 and reaching the receiver point r. It thus takes into account the full flow of ray
trajectories. The method has found widespread applications in room acoustics [5] and seismology [6] as well as
in determining radio wave field distributions in wireless communication [7] and in computer imagining
software [8]. A discussion of ray-tracing algorithms used for analysing the energy distribution in vibrating
plates can be found in Refs. [9,10].

Both methods—that is, SEA and ray tracing—are in fact complementary in many ways. Ray tracing can
handle wave problems well, in which the effective number of reflections at walls or interfaces is relatively small.
It gives estimates for the wave energy density with detailed spatial resolution and works for all types of
geometries and interfaces. SEA can deal with complex structures carrying wave energy over many subelements
including potentially a large number of reflections and scattering events albeit at the cost of reduced
resolution. In addition, the quality of SEA predictions may depend on how the subsystems are chosen as well
as on the geometry of the subsystems itself, and error bounds are often hard to obtain.

Ray tracing and SEA have in common that they predict mean values of the energy distribution and do not
contain information about wave effects such as interference, diffraction or tunnelling giving rise to
modulations of the signal on the scale of a wavelength. Both methods are thus expected to hold in the high-
frequency or small wavelength limit where the small scale fluctuations in the wave solutions are often averaged
out, for example, due to a finite resolution of the receiver.

It will be shown here that SEA can be derived from a ray picture and is indeed a low resolution version of a
ray-tracing method. Ray tracing is thus superior to SEA, however, at a large computational overhead. This
observation has also been made in a numerical study by Kulkarni et al. [10]. We introduce a new technique
here which interpolates between SEA and a full ray-tracing analysis. The method—called dynamical energy

analysis (DEA)—keeps as much information about the underlying ray dynamics as necessary, benefiting at the
same time from the simplicity of the SEA ansatz. DEA is thus an SEA type method in spirit but enhances the
range of applicability of standard SEA considerably and makes it possible to give quantitative error bounds
for an SEA treatment.

The ideas as presented here have their origin in wave or quantum chaos theory in which short wavelength
approximations are combined with dynamical systems or chaos theory, see [11] for an overview. Methods
similar in spirit to the theory outlined in this paper have been discussed in the context of structural dynamics
before. Heron [12] modelled correlations between energy densities in subsystems which are not adjacent to
each other in terms of direct and indirect contributions; the method does not take into account the actual ray
dynamics and thus neglects long range dynamical correlations. Langley’s [13,14] wave intensity analysis (WIA)
treats the wave field within each subcomponent as an (inhomogeneous) superposition of plane waves thus
introducing directionality which can propagate across coupling boundaries. The wave field is, however,
assumed to be spatially homogeneous in each subsystem—an ad hoc assumption which may often not be
fulfilled. In a ray-tracing treatment developed in a series of papers by Le Bot [15–17], a Green function for the
mean energy flow is obtained from local power balance equations, and the full flow across subsystems is
obtained via flux conditions. The approach presented here differs in as far as we consider multi-reflection in
terms of linear operators directly and use a basis function representation of these operators leading to SEA-
type equations.

The paper is structured as follows: in Section 2, we will briefly review the ideas behind standard SEA. In
Section 3 the ray-tracing approximation will be derived starting from the Green function and using small
wavelength asymptotics. In Section 4, we will introduce the concept of phase space operators and their
representation in terms of boundary basis functions. SEA emerges when restricting the basis set to constant
functions only. A specific example—coupled two plate system will be treated in Section 5.

2. SEA revisited

The starting point for an SEA treatment is the division of the whole system into subsystems; this is usually
done along natural boundaries, such as joints between plates or walls in a building. Energy is pumped into the
system at localised or delocalised source points (such as the vibrations of a motor) and is distributed
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throughout the systems in terms of vibrational or acoustic energy in one form or another. The net power flow
between subsystems is then given in the simple form

Pij ¼ oniZij

Ei

ni

�
Ej

nj

� �
, (1)

where Pij is the power transmitted between subsystem j and i, o is the (mean) frequency of the source, ni is the
modal density of the (uncoupled) subsystem i (with respect to frequency), Zij is a coupling constant and Ei is
the total vibrational energy in subsystem i. Allowing for a source term and dissipation and getting estimates
for the coupling constants [2,18,19] and the modal densities via Weyl’s law, one obtains a linear systems of
equations which is solved for the unknown energies Ei. SEA gives mean values for these energies in the same
way as Weyl’s law gives the mean density of eigenfrequencies.

The validity of Eq. (1) is based on various assumptions which can be summarised in the following way: (i) it
is assumed that subsystems have no memory, that is, the coupling constants Zij depend on the properties of
subsystems i and j alone and (ii) the eigenfunctions of the (uncoupled) subsystems are expected to be locally
described in terms of random Gaussian fields (‘diffusive wave fields’). These two key assumptions are expected
to be valid only in the high-frequency regime, for low absorption and for weakly coupled subsystems having
‘irregular’ shape [19,20]. The validity of these assumptions is often hard to control compromising the
predictive capability of SEA. The method presented in the next sections can overcome this problem in
principle, by reintroducing correlation effects as well as lifting the prerequisite that the wave and ray dynamics
in each subsystem is in a quasi ‘equilibrium state’ with uniform distributions across the subsystem.
Connections between SEA and the dynamical properties of the flow of ray trajectories has so far been made
only indirectly. The statistical properties of wave systems with a chaotic classical ray dynamics have been
shown to follow random matrix theory with wave functions behaving like random Gaussian waves [21]. The
basic SEA assumptions thus imply that the ray dynamics in each subelement needs to be chaotic. This point of
view has been stressed in the SEA literature by Weaver [22] and more recently in the context of determining
the variance of the wave output data in Refs. [23–26]. A detailed review discussing the connections between
ray and wave chaos has been given by Tanner and Søndergaard [11].
3. Wave energy density—from the Green function to the diagonal approximation

3.1. The Green function

We assume that the system as a whole is characterised by a linear wave operator Ĥ describing the overall
wave dynamics, that is, the motion of all coupled subcomponents as well as damping and radiation. In the case
of acoustic pressure waves in homogeneous media, we have, for example, Ĥ ¼ �c2D, where c is the wave
velocity. Different types of wave equations may be used in different parts of the system typically ranging from
the Helmholtz equation for thin membranes and acoustic radiation to the biharmonic equation for plate-like
elements and to vector wave equations describing in-plane modes in plates and bulk elasticity in isotropic or
anisotropic media. We restrict the treatment here to stationary problems with continuous, monochromatic
energy sources—generalising the results to the time domain with impulsive sources is straightforward.

To simplify the notation, we will in the following assume that Ĥ is a scalar operator; treating bulk elasticity
does not pose conceptual problems and follows for isotropic problems from Ref. [27] and for the anisotropic
case, for example, from Ref. [28]. Note that both in SEA as in the new method—DEA—developed below,
different wave modes such as pressure, shear or bending waves will be treated as different subsystems.

The general problem of determining the response of a system to external forcing can then be reduced to
solving

ðo2 � ĤÞGðr; r0;oÞ ¼
F 0

m
dðr� r0Þ, (2)

where the Green function Gðr; r0;oÞ represents the wave amplitude induced by a force F0 (of unit strength)
acting continuously at a source point r0 with driving frequency o and mðrÞ denotes the mass density. The wave
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energy density induced by the source is

�r0ðr;oÞ / mo2jGðr; r0;oÞj2. (3)

The bulk of the literature in acoustics and vibrational dynamics continues at this point by expanding the
Green function in terms of eigenfunctions of either the full system or its subcomponents. We propose to follow
a different route here by introducing a connection between the energy density and an underlying ray dynamics
and expressing the Green function in terms of classical rays.
3.2. Small wavelength asymptotics of the Green function

The linear wave operator Ĥ can in a natural way be associated with a ray dynamics via the Eikonal
approximation. A brief overview introducing the method is given in Appendix A. In particular, a Hamilton
function H related to the operator Ĥ is obtained, typically by replacing ir ! p, see for example (A.2); here,
p is referred to as ‘momentum variable’ in the context of Hamiltonian mechanics and is equivalent to a local
wavenumber.

Using small wavelength asymptotics, one can write the Green function Gðr; r0;oÞ solving Eq. (2) as sum
over all classical rays going from r0 to r for fixed Hðr; pÞ ¼ o2, where H is again the Hamilton function
associated with the operator Ĥ and p is the wavenumber. One obtains [29]

Gðr; r0;oÞ ¼ C
X

j:r!r0

Aje
iSj ðoÞ�injp=2, (4)

with prefactor

C ¼
F 0

mðr0Þ
p
o

1

ð2piÞðdþ1Þ=2
,

where d ¼ 1; 2 or 3 is the space dimension. The action SjðoÞ is defined in Eq. (A.4), and is usually the
dominant o dependent term; for example, for pressure waves in homogeneous media, one obtains a phase
term S ¼ jpjL ¼ oL=c where L is the distance between source and receiver point. The amplitudes Aj can be
written in the form [27,30]

Aj ¼ A
ðdÞ
j A

ðcÞ
j A
ðgÞ
j (5)

containing contributions due to damping ðdÞ, conversion and transmission/reflection coefficients ðcÞ and
geometrical factors ðgÞ. The damping factor is typically of the form A

ðdÞ
j ¼ expð�ajLjÞ with aj , the damping

rate and Lj, the geometric length of the trajectory. Furthermore, A
ðcÞ
j corresponds to the product of reflection,

transmission or mode conversion amplitudes encountered by the trajectory j at boundaries or material
interfaces [5,11,31–34]. Finally, AðgÞ contains geometric information and is of the form

jAðgÞj2 ¼
1

j_rjj _r0j

q2S
qr?qr?0

����
����, (6)

where j � j ¼ j detð�Þj and the derivatives are taken in a local coordinate system r?; r?0 perpendicular to the
trajectory at the initial and final point. The phase index nj contains contributions from transmission/reflection
coefficients at interfaces and from caustics, that is, singularities in the amplitude in Eq. (6). Furthermore, _r0; _r
denote the ‘ray-velocities’ at the start and endpoint with respect to a ‘fictitious’ time introduced in
Appendix A.

The representation (4) has been considered in detail in quantum mechanics, see the books by Gutzwiller
[29], Stöckmann [35] and Haake [36]. It is valid also for general wave equations in elasticity such as the
biharmonic [34] and the Navier–Cauchy equation [27]; in the latter case, G becomes matrix valued. Note that
the summation in Eq. (4) is typically over infinitely many terms where the number of contributing rays increase
(in general) exponentially with the length of the trajectories included. This gives rise to convergence issues,
especially in the case of low or no damping, see [11] and references therein.
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The wave energy density, Eq. (3), can now be expressed as a double sum over classical trajectories, that is,

�r0 ðr;oÞ /
X

j;j0:r0!r

AjAj0 e
iðSj�Sj0 �ðnj�nj0 Þp=2Þ

¼ rðr; r0;oÞ þ off-diagonal terms. (7)

The dominant contributions to the double sum arise from terms in which the phases cancel exactly; one thus
splits the sum into a diagonal part rðr; r0;oÞ (which can be identified with a phase space density as shown
below),

rðr; r0;oÞ ¼
X

j:r0!r

jAjj
2 (8)

containing only pairs with j ¼ j0 in Eq. (7) and an off-diagonal part containing the rest. The diagonal
contribution gives a smooth background signal, which is here proportional to the energy density; the off-
diagonal terms give rise to fluctuations on the scale of the wavelength. The phases related to different
trajectories are (largely) uncorrelated and the resulting net contributions to the off-diagonal part are in general
small compared to the smooth part—especially when considering averaging over frequency intervals of a few
wavenumbers. (There are exceptions from this general rule; length correlations between certain subsets of
orbits can lead to important off-diagonal contributions. Coherent backscattering or action correlations
between periodic rays which have been identified to explain the universality of random matrix statistics are
examples thereof; see [11] for details.)

In what follows, we will focus on the diagonal part, that is, we will show that neglecting off-diagonal terms
is equivalent to the standard ray-tracing approximation. We will show furthermore that ray tracing can be
written in terms of linear phase space operators and that SEA can be derived as an approximation of these
operator. The connection between SEA and classical (thermodynamical) flow equations is thus put on sound
foundations and the validity of the basic SEA assumptions as outlined in Section 2 can be quantified.

4. Propagation of phase space densities—from ray tracing to SEA

4.1. Phase space operators and probability densities

We consider the situation of a source localised at a point r0 emitting waves continuously at a fixed frequency o.
Standard ray-tracing techniques estimate the wave energy at a receiver point r by determining the density of
rays starting in r0 (within the constraint Hðr0; p0Þ ¼ o2) and reaching r after some unspecified time. This can
be written in the form

rðr; r0;oÞ ¼
Z 1
0

dt
Z

dp

Z
dX 0wðX 0; tÞdðX � jtðX 0ÞÞr0ðX

0;oÞ, (9)

where X ¼ ðp; rÞ denotes a point in phase space, (see Appendix A), and the initial density

r0ðX
0;oÞ ¼ dðr0 � r0Þdðo2 �HðX 0ÞÞ (10)

is centred at the source point r0. Furthermore, X ðtÞ ¼ jtðX 0Þ is the phase space flow generated by equations of
motion of the form (A.3) with initial conditions X ð0Þ ¼ X 0 and t is the time introduced in Eq. (A.3). It can be
shown that Eq. (9) is equivalent to the diagonal approximation, Eq. (8), see Appendix B.

The weight function wðX ; tÞ contains damping and reflection/transmission coefficients and we assume here
that w is multiplicative, that is,

wðX ; t1Þwðjt1 ðX Þ; t2Þ ¼ wðX ; t1 þ t2Þ, (11)

which is fulfilled for (standard) absorption mechanism and reflection processes. Note, that the integral kernel

LtðX ;X 0Þ ¼ wðX 0; tÞdðX � jtðX 0ÞÞ (12)

is a linear operator—often called the Perron–Frobenius operator—which (after setting w ¼ 1)
may be interpreted as a propagator for the Liouville equation describing the time evolution of phase space
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densities [37]

_rðX Þ ¼ fHðX Þ; rðX Þg

(where f�; �g denotes the Poisson brackets) with solution

rðX ; tÞ ¼Lt½r0� ¼
Z

dX 0 dðX � jtðX 0ÞÞr0ðX
0Þ.

Eq. (9) can be simplified to

rðr; r0;oÞ ¼
Z 1
0

dt
Z

dp0 wðp0; r0; tÞdðr� jt
rðp
0; r0ÞÞdðo2 �Hðp0; r0ÞÞ, (13)

where jt
rðX Þ ¼ rðtÞ denotes the r-component of the flow vector. Eq. (13) is the starting point for a variety of

ray-tracing techniques [5,6,8].
While the basic Eq. (13) may seem ‘obvious’ from a ray geometrical point of view, we provide in Section 3.2

and Appendix B a derivation from first principles starting from the wave equation. For references in a
quantum context, see [38,39]. The connection between ray-tracing densities and the double sum over ray
trajectories, Eq. (7), may form the basis for including ‘higher order’ wave effects contained in the off-diagonal
part. In what follows, we will stay within the diagonal approximation, however.
4.2. Boundary maps and related operators

We will for simplicity assume that the wave problem is confined to a finite domain with well defined
boundaries; we may, for example, consider the vibrations of (coupled) plates of finite size or acoustic/elastic
problems within bodies of finite volume. The long time limit of the dynamics is then best described in terms of
boundary maps, that is, one records only successive reflections of a ray trajectory at the boundary. We
introduce a coordinate system on the boundary, X s ¼ ðs; psÞ, where s parameterises the boundary and ps

denotes the momentum components tangential to the boundary at s (X s is often referred to as Birkhoff
coordinates). Phase space points X ¼ ðr; pÞ on the boundary are mapped onto X s by an invertible
transformation B : X ! ðX s;oÞ with HðX Þ ¼ o2.

We now introduce two new operators: firstly, we define an operator LB propagating a source distribution
from the interior to the boundary, that is,

LBðX s;X
0Þ ¼ wðX 0; tBÞ cos ydðX s �BðjtBðX 0ÞÞÞ,

where X 0 is an arbitrary phase space point in the interior and tBðX
0Þ is the time it takes for a trajectory with

initial condition X 0 to hit the boundary for the first time; the angle yðX 0Þ is taken between the normal to the
boundary at the point s and the incoming ray velocity vector p, see Fig. 1a. Secondly, we introduce the
Fig. 1. Coordinates used for the boundary maps: (a) in case of a single subsystem and (b) at an intersection between two subsystems.
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boundary operator

TðX s;X
0
s;oÞ ¼ wðX 0sÞdðX s � foðX

0
sÞÞ,

which is the Perron–Frobenius operator for the boundary map

foðX
0
sÞ ¼ BðjtBðX 0ÞÞ with X 0 ¼ B�1ðX 0s;oÞ.

One can now write the stationary density in the interior, Eq. (13), in terms of the boundary operators
introduced above. Firstly, the initial density (10) is mapped onto the boundary, that is,
~r0ðX s;oÞ ¼

R
dX LBðX s;X Þr0ðX ;oÞ. The stationary density on the boundary induced by the initial boundary

distribution ~r0ðX s;oÞ is then

~rðoÞ ¼
X1
n¼0

TnðoÞ ~r0ðoÞ ¼ ð1�TðoÞÞ�1 ~r0ðoÞ, (14)

where Tn contains trajectories undergoing n reflections at boundaries. The resulting density distribution on
the boundary, ~rðX s;oÞ, can now be mapped back into the interior using L�1B and one obtains the density (13)
after projecting down onto coordinate space, that is,

rðr; r0;oÞ ¼
Z

dpdX s L
�1
B ðX ;X sÞ ~rðX s;oÞ. (15)

The long term dynamics is thus contained in the operator ð1�TÞ�1 and standard properties of the
Perron–Frobenius operators ensure that the sum over n in Eq. (14) converges for non-vanishing dissipation.
Note, that for wðX Þ � 1, T has a largest eigenvalue 1 and the expression in Eq. (14) is singular. That is, in the
case of no losses due to absorption or radiation, a source continuously emitting energy into the system will
lead to a diverging energy density distribution in the long time limit. The eigenfunction of T (and L)
corresponding to the eigenvalue 1 is the constant function; that is, for wðX Þ � 1, the energy is equally
distributed over the full phase space [40] in equilibrium.

To evaluate ð1�TÞ�1 it is convenient to express the operator T in a suitable set of basis functions defined
on the boundary. Depending on the topology of the boundary, complete function sets such a Fourier basis for
two-dimensional plates or spherical harmonics for bodies in three dimensions may be chosen. Denoting the
orthonormal basis f. . . ;C0;C1;C2; . . .g, we obtain

Tnm ¼

Z
dX s dX 0s C

�
nðX sÞTðX s;X

0
s;oÞCmðX

0
sÞ

¼

Z
dX 0s C

�
nðfoðX

0
sÞÞwðX

0
sÞCmðX

0
sÞ. (16)

The treatment is reminiscent to the Fourier-mode approximation in the WIA [13,14]; note, however, that the
basis functions cover both momentum and position space here and can thus resolve spacial density
inhomogeneities unlike WIA. If the boundary map foðX sÞ is not known or hard to obtain, it is often
convenient to write the operator in terms of trajectories with fixed start and end points s0 and s; one obtains

Tnm ¼

Z
dsds0

1

jqs=qp0sj
C�nðX sÞwðX

0
sÞCmðX

0
sÞ

¼

Z
dsds0

q2S
qsqs0

����
����C�nðX sÞwðX

0
sÞCmðX

0
sÞ, (17)

with X s ¼ ðs; psðs; s
0ÞÞ and X 0s ¼ ðs

0; p0sðs; s
0ÞÞ and S is the action introduced in Eq. (A.4). The representation,

Eq. (17), is advantageous for homogeneous problems where the ray trajectory connecting the points s0 and s is
a straight line, see the examples discussed in Section 5.

4.3. Subsystems

In many applications, it is natural to split the full system into subsystems and to consider the dynamics
within each subsystem separately. Coupling between subelements can then be treated as losses in one
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subsystem and source terms in the other. Typical subsystem boundaries are surfaces of reflection/transmission
due to sudden changes in the material parameters or local boundary conditions (BC) due to for example bends
in plates. Also, weakly connected subdomains such as two regions connected through small openings may be
considered as separate subsystems. We denote the subsystems fP1; . . . ;PNg and describe the full dynamics in
terms of the subsystem boundary operators Tij ; flow from Pj to Pi is possible only if the two subsystems are
connected and one obtains

TijðX i
s;X

j
sÞ ¼ wijðX j

sÞdðX
i
s � fij

oðX
j
sÞÞ, (18)

where fij
o is the boundary map in subsystem j mapped onto the boundary of the adjacent subsystem i and X i

s

are the coordinates of subsystem i, see Fig. 1b. (Note, that subsystems exchanging wave energy are necessarily
connected through a common boundary here.) The weight wij contains, among other factors, reflection and
transmission coefficients characterising the coupling at the interface between Pj and Pi.

A basis function representation of the full operator T as suggested in Eq. (16) is now written in terms of
subsystem boundary basis functions Ci

n with

Tij
nm ¼

Z
dX i

s dX j
s C

i�

nðX
i
sÞT

ijðX i
s;X

j
sÞC

j
mðX

j
sÞ. (19)

The equilibrium distribution on the boundaries of the subsystems is then obtained by solving the systems of
equations (14)

ð1� TÞ ~r ¼ ~r0. (20)

Here, T is the full operator including all subsystems and the equation is solved for the unknown energy
densities ~r ¼ ð ~r1; . . . ; ~rNÞ where ~riðnÞ denotes the (Fourier) coefficients of the density on the boundary of
subsystem i. Equations similar to (20) have been considered by Craik [4] in the context of SEA. Note, that for
a source localised in subsystem j, one obtains ~ri

0a0 only if Pi has a boundary in common with subsystem Pj.

4.4. From ray tracing to SEA

Up to now, the various representations given in Section 4 are all equivalent and correspond to a description
of the wave dynamics in terms of the ray-tracing ansatz (9). Traditional ray tracing based on sampling ray
solutions over the available phase space is rather inefficient, however. Convergence tends to be fairly slow,
especially if absorption is low and long paths including multi-reflections need to be taken into account.
Finding all the possible rays which connect a fixed source and receiver point is a computationally expensive
boundary value problem and typically only a small sample of all the trajectories calculated are actually needed
in determining the local energy density. In addition, the number of rays connecting source and receiver grows
quickly (often exponentially) with the length of the ray trajectories setting fairly tight numerical bounds on the
number of reflections one can take into account—a severe limitation in the low damping regime.

These problems are common for ray summation methods [11,37]. They can be overcome by describing the
dynamics in terms of boundary operators and boundary functions Cn as outlined above. While the
representations are equivalent when employing the full set of basis functions (leading to infinite dimensional
operators T ), this is, of course, not the case for finite dimensional approximations. When considering the
solutions of Eqs. (14) or (20), one is in general interested in smooth approximations of the energy density
obtained from the classical flow. The resolution required is naturally limited by the wavelength of the
underlying wave equation, but in many application a much coarser resolution will be sufficient.
Convergence for obtaining such coarse grained energy density distributions is in general fast when increasing
the dimension of the operators involved and often only a very small number of basis functions (of the order
p10 per subsystem and momentum and position coordinate) are necessary. In addition, only short ray-
segments are needed to evaluate operators of individual subsystems as multi-reflections are included explicitly
in the sum (14).

An SEA treatment emerges when approximating the individual operators Tij in terms of the lowest order
basis function (or Fourier mode), that is, the constant function Cj

0 ¼ ðA
j
BÞ
�1=2 with A

j
B, the area of the

boundary of Pj. The matrix Tij is then one-dimensional and gives the mean transmission rate from subsystem
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Pj to Pi. It is thus equivalent to the coupling loss factor Zij used in standard SEA equations, see Eq. (1). The
resulting full N-dimensional T matrix (with N, the number of subsystems) yields a set of SEA equations using
relation (20) (after mapping the boundary densities back into the interior with the help of local operatorsLi

B).
Note, that the terms Ei=ni�r̄i in Eq. (1) are in fact mean energy densities as the mean density of eigenvalues ni

is to leading order proportional to Ai, the area/volume of subsystem Pi, which follows from Weyl’s law [11].
The matrix T can in this approximation be interpreted as a transition matrix of an N-dimensional Markov

chain; SEA is thus in fact a Markov approximation of a deterministic dynamics. Similar approaches have been
taken in dynamical systems theory over the last decades leading to a stochastic interpretation of chaotic
dynamical systems in terms of a thermodynamical formalism [37]. A Markov or SEA approximation is
justified if the ray dynamics within each subsystem is sufficiently chaotic that a trajectory entering subsystem j

‘forgets’ everything about its past history before exciting Pj again. In other words, correlations within the
dynamics must decay fast on the time scales of the staying time t̄j. This is the time scale it takes for a typical
ray to leave Pj either by being transmitted to another subsystem Pi or by being lost due to absorption. In other
words, the dynamics must equilibrate on the time scale t̄j. This condition will often be fulfilled if the
subsystems’ boundaries are sufficiently irregular, the subsystems are dynamically well separated and
absorption and dissipation is small—conditions typically cited in an SEA context. In this case, SEA is an
extremely efficient method compared to standard ray-tracing techniques. However, for subsystems with
regular features, such as rectangular cavities or corridor-like elements, incoming rays are directly
channelled into outgoing rays thus violating the equilibration hypothesis and introducing memory effects.
Likewise, strong damping may lead to a significant decay of the signal before reaching the exit channel
introducing geometric (system dependent) effects—that is, the distance between input and output channel
becomes relevant.

These features can all be incorporated by including higher order basis functions for each subsystem
boundary operator Tij. This makes it possible to resolve the fine structure of the dynamics and its correlation
as well as effects due to non-uniform damping over typical scales of the subsystem. As one increases the
number of basis functions, a smooth interpolation from SEA to a full ray-tracing treatment is achieved. The
maximal number of basis functions needed to reach convergence are expected to be relatively small thus
making the new method more efficient than a full ray-tracing treatment—in particular in the small damping
regime. Typical dimensions of Tij are determined by escape-, correlation- and damping-rates of the ray
dynamics in subsystem j. A priori or a posteriori bounds for the size of the basis set needed can thus be
obtained from dynamical properties of the underlying ray flow.

Representing the ray dynamics in terms of finite dimensional transition matrices correspond to a refinement
of an SEA technique. The new method takes advantage of the efficiencies of SEA, but includes additional
information about the ray dynamics where necessary. It overcomes some of the limitations of SEA and puts
the underlying SEA assumptions on sound foundations. We therefore refer to the new method as DEA
stressing the importance of the dynamical properties of the underlying ray flow. Note that, like SEA and ray
tracing, the method is purely based on a classical ray picture and is thus inherently a short wavelength
approximation. It does not take into account wave-like phenomena; from a wave asymptotics point of view,
these are contained in the off-diagonal contributions in Eq. (7). Wave effects often become important in
mechanical structures containing elements with short and long wavelengths (at the same basic frequency) and
hybrid SEA—finite element methods have been developed in this case [18,41,42]. An extension of these
methods to DEA will be of importance, but is beyond the scope of this paper.

5. A numerical example: coupled two-plate systems

The method has been implemented numerically for a coupled two-plate system; the vibrational energy
distribution has been calculated using DEA for plates of different shape where the coupling between the plates
is achieved by choosing simply supported BC along a common line of intersection. We assume clamped BC at
the outer edges, that is, Snell’s law of reflection applies and no losses occur at the boundaries. The two plates
have the same thickness and are homogeneous otherwise. The BC at the intersection introduces reflection and
transmission and acts as a barrier thus providing a natural boundary for dividing the system into two distinct
subsystems. Three different configurations are considered and shown in the insets of Fig. 2. Estimates for the
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vibrational energy induced by a point source in subsystem 1 will be obtain by using DEA and will be
compared to standard SEA results.
5.1. Set-up

The plates are treated as two-dimensional systems and a Fourier basis both in position and momentum
space is thus an adequate choice for the set of basis functions, that is

Fi
nðs; psÞ ¼

1ffiffiffiffiffiffiffi
2Li

p e2piðn1s=Liþn2ps=2Þ,

with n ¼ ðn1; n2Þ, integers, and s 2 ½0;LiÞ; ps 2 ð�1; 1Þ, where Li is the length of the boundary and i ¼ 1 or 2.
The wavenumber is set equal to 1 here. Note, that the estimates for the energy distributions obtained via DEA
are frequency independent in this example as neither the ray paths nor the reflection coefficients at the ray
splitting boundary depend on o. We also assume for simplicity that the damping coefficient a is independent
of the driving frequency. For a set of material parameters suitable for our model (and needed, for
example, in a finite element calculation), see Table I in Ref. [43] from which one of the
configurations—configuration B—has been taken. The transmission probability at the intersection of the
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two plates yields for simply supported BC

wtðyÞ ¼ 1
2
cos2 y,

with y 2 ½�p=2;p=2�, the angle between the incoming ray and the normal to the surface.
Given the start and end point s0; s on the boundary of either plate 1 or 2, one can obtain the rays, their

lengths and the angles of intersection (and thus the momentum components tangential to the boundary) easily.
The integral representation of the boundary operator in form (17) is thus advantageous. Writing out the
Jacobian jqs=qp0j, one obtains

Tij
nm ¼

Z
dsi dsj wij cos y

i cos yj

Lðsi; sjÞ
Fi�

nF
j
m,

where Lðsi; sjÞ is the length of the trajectory. The weight function is given as

wij ¼ w
ij
be
�aL,

with a, the damping coefficient, and the reflection/transmission coefficients are

w
ij
b ðs

i; sjÞ ¼
dij if sieBi

I ;

dij þ ð�1Þ
d
ijwtðy

i
ðsi; sjÞÞ if si 2 Bi

I ;

(

where Bi
I denotes the part of the boundary in the coordinate system si lying on the intersection of plates 1

and 2.

5.2. Numerical results

The plates considered in this study all consist of sets of straight boundaries1—such polygonal shapes are
typical for many engineering applications. Three different set-ups have been chosen (see Fig. 2):
�

1

the

the
Configuration A comprises two subsystems of irregular shape with a line of intersection relatively small
compared to the total length of the boundaries; the two subsystems are thus well separated and SEA is
expected to work well.

�
 Configuration B consists of two plates where the line of intersection is of the order of the size of the system;

the only dynamical barrier is posed by the BC itself. The standard SEA assumption of weak coupling and a
quasi-stationary distributions in each subsystem may thus be violated. (This configuration has also been
studied in Refs. [19,43].)

�
 Configuration C has a left-hand plate with regular features and rays are channelled out of this plate

effectively introducing long-range correlations in the dynamics thus again violating a typical SEA
assumption. In addition, the source is positioned at the far end of plate 1 in contrast to the other two
configurations with a source placed close to the intersection.

Note, that SEA results are in general insensitive to the position of the source, whereas actual trajectory
calculations may well depend on the exact position especially for strong damping and for sources placed close
to or far away from points of contact between subsections.

Numerical calculations have been done for finite basis sets up to n1; n2 ¼ �N; . . . ;N with Np6. This gives
rise to matrices of the sizes dimT ¼ 2ð2N þ 1Þ2 with basis functions covering position and momentum
coordinates uniformly in both subsystems. Energy distributions have been studied as a function of the
damping rate a. Note, that in the limit a! 0, the matrix T has an eigenvalue one with eigenvector
corresponding to an equidistributed energy density over both plates, see the discussion following Eq. (15). In
the case of no damping, the ray dynamics explores the full phase space uniformly on the manifold HðX Þ ¼ o2

in the long time limit. Eq. (20) is singular for a ¼ 0 and the solutions become independent of the source
To be precise, polygonal shapes as considered here lead to pseudo-integrable dynamics which is strictly speaking not even ergodic; at

level of approximation considered here, the decay of correlation in the dynamics of irregular polygons is sufficient in principle to test

SEA assumptions.
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distribution r0 for a! 0. One obtains

lim
a!0

r̄1
r̄2
¼ lim

a!0

�1
�2
¼ 1,

where r̄i denotes the mean ray density in plate i averaged over the area of the plate and �i is the corresponding
mean energy density obtained from Eq. (3).

Results for the relative energy density distribution for the two-plate systems are shown in Fig. 2. Increasing
the basis size—indicated here by the index N—leads to fast convergence as is evident from the figures.
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An SEA-like treatment corresponds to N ¼ 0, here. The lower right-hand panel in Fig. 2 also shows the
difference between an SEA and DEA treatment (the latter with N ¼ 6).

SEA works remarkably well for configuration A, for which the main SEA assumptions, that is, irregular
shape, well separated subsystems and relative small damping, are fulfilled. The deviations between SEA and
the high-resolution result N ¼ 6 are of the order of a few percent. Given that SEA describes the energy
densities here in terms of a system of only two coupled equations, this clearly shows the power of SEA
compared to, for example, ray-tracing methods. In configuration B, the division into two subsystems is less
clear-cut and deviations from SEA due to the strong coupling between the plates may be expected. Indeed, one
finds a higher energy density in plate 2 than expected from SEA—energy dissipates into plate 2 before an
equilibrium distribution is attained in plate 1. The effect is here of the order of 10% and thus still relatively
small.

However, it is not too difficult to devise plate configurations where significant deviations from SEA occur.
In configuration C, plate 1 has a rectangular shape thus acting as an effective channel for transporting wave
energy from plate 1 to plate 2; the plate shape thus induces long range correlations and memory effects into the
ray dynamics. In addition, the source has been placed away from the intersection magnifying both the
influence of correlation effects as well as short range effects due to absorption for large a. One indeed finds
more wave energy in plate 2 than expected from an SEA treatment for small a—a clear sign that plate 1 acts as
an effective channel. For large a, however, the wave energy gets damped out before reaching the intersection
due to the relative long path lengths caused by the position of the source. Thus, less wave energy than expected
from an SEA treatment reaches plate 2 and the ratio �1=�2 is above the SEA curve. Note, that the deviations
between DEA and SEA are now significant and in the region of about 50%.

DEA makes it possible to resolve the wave intensity distribution within each of the subsystems. The
boundary distribution obtained from Eqs. (14) and (15) can be mapped back into the interior using the
operator L�1B in each subsystems, see Eq. (15). The spatial resolution of the wave energy density contains
important information about, for example, the (acoustic) radiation characteristics of subelements in the high-
frequency limit. In Fig. 3, typical intensity distributions are shown for the three plate configurations at a
medium damping rate a ¼ 1 and N ¼ 6. The left-hand panel shows the wave distribution induced by rays
reflected from the boundary (indirect contributions), the right-hand panel also includes the direct rays
emanating from the source point. (It is worth clarifying that only the indirect signals have been considered in
the results presented in Fig. 2). The wave intensity plots confirm the observations described earlier; while for
configurations A and B, one can identify a quasi-equilibrium distribution in each subsystem characterised by a
plateau-structure in each of the two plates, the correlated dynamics in configuration C leads to a smooth decay
of the signal within plate 1.

6. Conclusions

We have shown that ray-tracing methods and SEA are closely related and that the latter is indeed an
approximation of the former by smoothing out the details of ray dynamics within individual subsystems. We
propose a numerical technique which interpolates between SEA and full ray tracing by resolving the ray
dynamics on a finer and finer scale. This is achieved by expressing the dynamics in terms of linear boundary
operators and representing those in terms of a set of basis functions on the boundary. The resolution of the
dynamics is now determined by the number of boundary functions taken into account.

We provide a derivation starting directly from a short wavelength approximation of the wave equation and
leading all the way to setting up the basic DEA equations; we thus offer a step by step account of the
approximations and simplifications made. The basic SEA assumptions can be tested systematically by relating
them back to aspects of the ray dynamics. Furthermore, extending SEA to DEA enhances the range of
applicability of an SEA-like treatment.

DEA and SEA are high-frequency methods, that is, they will give estimates for the energy density
distribution in a regime not accessible to ‘numerically exact’ PDE solvers such as finite element methods
(FEM). These become computationally too expensive for high frequencies (that is, for wave problems where
typical wavelength are more than 1–2 orders of magnitude smaller than the typical system size). A finite
element analysis leads then to matrix equations too big to handle even for the supercomputer architectures
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available today. SEA has thus become a valued alternative widely used in the engineering community for
estimating energy distributions in wave problems with high-frequency noise sources. DEA is expected to give
good results also only in the high-frequency limit; it will offer more robust and reliable estimates in this regime
compared to SEA and may thus form the basis of a high-frequency black-box tool.

Neither SEA nor DEA are suitable to tackle so-called mid-frequency problems—that is, structures with a
large variation in local wavelengths. These problems are common in engineering, but pose a serious challenge
for modelling efforts, as they are in general also too hard to tackle by numerical methods such as FEM. SEA
has been used as a starting point for penetrating the mid-frequency regime by employing hybrid methods
based on combining FEM and SEA treatments [18,41,42,44]. Future efforts will be devoted to develop similar
hybrid approaches for the new DEA approach, thus contributing to the development of stable and universal
numerical modelling algorithms in the mid- to high-frequency range.
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Appendix A. Ray dynamics

A ray or classical dynamics associated with a wave equation (2) can be obtained via the Eikonal
approximation writing the solutions in the form of a phase SðrÞ and amplitude AðrÞ; assuming that the
amplitude A changes slowly on the scale of the wavelength, one obtains a governing equations for the phase S

alone. For example, for the Helmholtz equation with Ĥ ¼ c2r2, one obtains

c2ðrSÞ2 ¼ o2, (A.1)

where c denotes the wave velocity (assumed to be constant here). Dissipative terms are usually incorporated in
the equation for the amplitude A. The Hamilton–Jacobi equation (A.1) can be solved by the method of
characteristics. After defining p � rS (where we adopt the notation of classical mechanics where p refers to
momentum) and the Hamilton function

Hðp; rÞ ¼ c2p2 ¼ o2, (A.2)

one obtains the ray-trajectories ðrðtÞ; pðtÞÞ from Hamilton’s equations

_r ¼
d

dt
r ¼ rpH ¼ 2c2p; _p ¼

d

dt
p ¼ �rrH. (A.3)

The fictitious time t is conjugated to the ‘energy’ o2 and is related to the physical time by t ¼ 2ot. The
dimensionless action S is given as

Sðr; r0Þ ¼

Z r

r0

dr0 pðr0Þ, (A.4)

where the integration is taken along a ray from r0 to r on the manifold Hðr; pÞ ¼ o2. For homogeneous media
with constant wave velocity, as considered here, on obtains S ¼ jpjL with Lðr; r0Þ, the length of the ray path
from r0! r.

The ray dynamics in mechanical structures consisting of coupled subsystems will typically entail reflection
on boundaries, partial reflection/transmission at interfaces between two media and multi-component ray
dynamics including mode conversion. The latter may occur between pressure and shear ‘rays’ at boundaries
for typical BC (such as free boundaries); note, that the different wave components have different local wave
velocities and will thus follow different equations of motion (A.3).

The number of rays starting in r0 (with arbitrary momentum) and passing through r increases (for fixed o)
rapidly with the length or the action of the ray trajectories. If the ray dynamics is chaotic, that is, the ray
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solutions show exponential sensitivity to initial conditions, one finds that the number of trajectories going
from r0! r increases exponentially with their length [29]. Regular dynamics such as the solution of Eq. (A.3)
for rectangular or circular geometries leads to a power law increase in the number of ray solutions from
r0! r.

Appendix B. Derivation of the ray-tracing equation (9)

It will be shown here that Eq. (8) is equivalent to the ray tracing equations (9), (13). For further details on
the derivation, see also Ref. [29]. Starting point is Eq. (13) (where we set w � 1 here to simplify the notation),
that is,

rðr; r0;oÞ ¼
Z 1
0

dt
Z

dp0 dðr� jt
rðp
0; r0ÞÞdðo2 �Hðp0; r0ÞÞ. (B.1)

We write the d-functions in the form

dðr� jt
rðp
0; r0ÞÞdðo2 �Hðp0; r0ÞÞ ¼

X
j

1

D
dðt� tjÞdðp0 � p0jÞ, (B.2)

where the index j counts all possible solutions of

jtj
r ðp
0
j ; r0Þ ¼ r; Hðp0j ; r0Þ ¼ o2.

These are the rays emanating from the source point r0 and reaching the final point r on the manifold H ¼ o2.
The Jacobian D is

D ¼
qðr;HÞ
qðp0; tÞ

����
���� ¼

qr

qp0
qH

qp0

qr

qt

qH

qt

��������

��������
.

Making use of the equation of motion (A.3), one identifies qH=qp0 ¼ _r0 and we have qH=qt ¼ 0. It is now
convenient to switch to a local coordinate systems r ¼ ðrk; r?Þ; p ¼ ðpk; p?Þ at the initial and final point where
rk, pk point along the trajectory in phase space. One obtains

D ¼

_r0k
qr

qp0
0

..

.

_rk 0 � � � 0

�������������

�������������
¼ j_rjj _r0j

qr?

qp?

����
���� ¼ jAðgÞj�2, (B.3)

where AðgÞ is the geometric contribution to the wave amplitude, Eq. (6). Combining Eqs. (B.2) and (B.3) with
(B.1), one obtains the diagonal term (8).
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[33] R. Blümel, T.M. Antonsen Jr., B. Georgeot, E. Ott, R.E. Prange, Ray splitting and quantum chaos, Physical Review Letters 76 (1996)

2476.

[34] E. Bogomolny, E. Hugues, Semiclassical theory of flexural vibrations of plates, Physical Review E 57 (1998) 5404.
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